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Abstract-An analytical solution is presented for the spatially large deformation of a thin elastic
rod (spatial elastica) which is naturally straight and uniform with equal principal stiffnesses and is
subjected to terminal loads. The elastica can suffer not only flexure and torsion as in the classical
Kirchhoff theory, but also extension and shear. The present solution is expressed in integral form
and described in terms of only four parameters. This solution clears the difficulty with the polar
singularity in the use of Euler angles. Hence, the numerical analysis is possible for various boundary
value problems with no limitation.

In this paper we study the post-buckling behavior of an elastica under the terminal twist and
uniaxial end-shortening, and give a theoretical explanation to commonly observed phenomena such
as secondary bifurcation, formation of a kink, snap-through behavior. The contact problem is
analyzed in the case where the elastica contacts with itself and forms a kink. These results are
available for other analysis, e.g., based on finite element approximations. © 1997 Elsevier Science
Ltd.

1. INTRODUCTION

The mathematical model of an elastic rod used in the analysis of geometrically nonlinear
deformation in three dimensions is called spatial elastica. The analysis of the spatial elastica
dates back to Kirchhoff who formulated the deformation of the spatial elastica with no
axial or shear strain. Afterwards, a large amount of literature discussed the post-buckling
behavior of the spatial elastica by numerical and theoretical approach [e.g., Antman (1974),
Antman and Kenney (1981), Buzano et at. (1985)]. These obtained analytical solutions of
the Kirchhoff elastica with uniformly equal principal moments of inertia of the cross
section. A few papers were concerned with the application of the solutions to boundary
value problems and discussed the characteristics of the spatial deformation of an elastica
[e.g. Kovari (1969), Rosenthal (1976)]. These solutions are described in integral form, and
the numerical integration is needed for the analysis of the boundary value problem.
However, the computation diverges at the singular point. We must therefore treat this
singularity carefully in order to discuss the global behavior of the elastica.

The spatial deformation of the elastica contains various interesting aspects. Among
them, unstable behaviors caused by the applied torsion is most important. When a cable is
twisted with end-shortening, it makes loops under tension, and then tightens under sub
sequent increasing tension, i.e., kinking occurs. A rubber band forms knots only with the
terminal twist and no end-shortening. It is quite difficult to analyze such phenomena because
they involve a contact problem. This contact problem is therefore analyzed with quite
simple mathematical models [Ross (1977), Yabta et at. (1982)]. In addition, the rubber
knots occur with axial extension and we cannot appropriately analyze them by using the
Kirchhoff theory which neglects the extension of the elastica.
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In this paper, we derive an analytical solution of the equilibrium problem of the spatial
deformation of an elastica formulated by Reissner (1981). The elastica has equal principal
stiffnesses and can suffer flexure, torsion, extension, and shear. The external loads are
applied only at the both ends of the elastica. Although this solution is expressed in terms
of Euler angles, no difficulty arises in the computation. We also present the numerical
procedure to analyze the self-contact problem of the elastica.

To demonstrate the validity and the applicability of the present solution, we analyze
the global behavior of a uniaxially end-shortened, terminally twisted elastica. The self
contact of the elastica is also considered. There are two cases in this problem. One is the
case of twisting the elastica before shortening, and the other is that of shortening it before
twisting. We call the former boundary value problem "the twist-shortening problem" and
the later "the shortening-twist problem". The analysis of these problems by the finite
element method was difficult because the rotation of the local coordinates is very large and
changes rapidly along the arc length of the elastica. But this difficulty has been recently
cleared up, and such problems have been studied [Felippa and Crivelli (1991), Nour-Omid
and Rankin (1991), Watanabe et al. (1992)]. However, since the contact problem mentioned
above has not been analyzed successfully by the finite element approach yet, the results
presented in this paper are available for estimating the accuracy of the results obtained by
finite element approximations.

2. FORMULATION

In this study, we have four assumptions:

AI. The elastica has uniform cross-section and equal principle stiffness.
A2. Although the displacement may be large, the strains are small so that the stress

resultants depend linearly on the force strains, and the stress couples depend linearly
on the moment strains.

A3. There can be no deformation within the cross-section.
A4. No distributed load is applied along the elastica and only terminal loads are

applied.

Let {oj(s,r)};=1.2.3 represent the orthogonal basis vector ofa local frame attached to a
typical cross-section in the deformed state, where S denotes the arc length along the line of
centroid of the undeformed elastica and r is a time parameter of the deformation process.
The origin of the local frame is fixed at the centroid of the cross-section, and 03 remains
normal to the section through the deformation process while 01 and 02 lie along the principle
axes of the section. Let us introduce the reference orthogonal basis at each process deooted
by {e;(r)};~1,2.3 and specify the orientation of the local frame by Euler angles
{tf;(s, r), e(s, r), ¢(s, r)} (Love, 1952) and the reference basis:

°1 =(cosecostf;cos¢- sintf;sin¢)el +(cosesint/Jcos¢

+ cos t/J sin ¢ )e2 - sin ecos ¢e3

02 = ( - cos ecos tf; sin ¢ - sin tf; cos ¢ )e l + (cos t/J cos ¢

- cos esin tf; sin ¢ )e2+ sin esin ¢e3

03 = sin ecos t/Je I + sin esin t/Je2+ cos ee3

(1)

The force strains {y;(s, r)};= 1.2,3 are defined in terms of the local basis and the position
vector x of the centroid of the cross-section:

(2)
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where ()' = d/ds(). The moment strains {Kj(S, r)};~ I,n are defined as follows:

0; = k x OJ (i = 1,2,3)

where
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(3)

(4)

Here 1'1 and 1'2 measure shear about the axes "I and 02 while 1'3 measures extension. K[ and
K2 measure flexure about "j and 02 while K3 measures torsion. The moment strains are
expressed in terms of the Euler angles introduced in eqn (1) :

KI = ()' sin ¢ -If;' sin () cos ¢, K2 = ()' cos ¢ +1/;' sin () sin ¢, K3 = ¢' +1/;' cos (). (5)

Let {P/s, r)} j~ 1.2,3 and {Mj(s, r)} j~ 1,2,3 represent the components of the stress resultant
and those of the stress couple about the local frame, respectively. Then, in the absence of
distributed loads, the equilibrium equations with respect to these components are given as
follows (Reissner, 1981):

P'j-P2K3+P3K2 =0, M;-M2K3+M3K2-P2(1+Y3)+P3Y2 =0)
P; -P3KI +P1K3 = 0, M 2-M3Kj +MIK3 -P3YI +P1(1 +Y3) = 0 .

P;-PtK2+P2Kj =0, M;-MjK2+M2KI-PtY2+P2YI =0
(6)

According to the assumptions Al and A2, the constitutive relations are expressed as follows
[Iura and Atruli (1988), Ooto et al. (1990)]:

where A, A 3, K, K 3 are flexural, torsional, shear, and extensional rigidity, respectively. They
are assumed to be constant along the arc length.

Let us nondimensionalize length and coordinates by the lastica length I, the moment
strains by nil, the stress resultants by the Euler Buckling load An2W, the stress couples
by Anll, and express the nondimensionalized values by the same characters hereinafter.
Furthermore, let us introduce non-dimensional stiffness ratios p, q, a as follows:

(8)

p, q, and a represent the stiffness ratios of flexure to shear, extension, and torsion, respec
tively. Then, by using eqn (7), we can integrate the equilibrium eqn (6) into

K

3

)

KIP j +K2P2 + -P3 = const == RCo

KT +K~ +2P3+~q-P)P~ = const == C j

K3 = const == K~

(9)

(10)

where {R(r), Co(r), Cl(r), K~(r)} are integral constants. R represents the amount of the
applied terminal force. Equation (9) is obtained by taking the direction of e3 opposite to
that of the terminal force. Therefore the orientation of the reference frame should be
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specified by two Euler angles which we denote {!/tp(')' 8p(r)} :

ej = cos 8pcos ljJpE j + cos 8psin ljJpE2 - sin 8pE 3

e2 = - sinljJpE I + cosljJpE 2

e3 = sin8pcosljJpE j + sin 8psinljJpE 2 + cos8pE 3

(11 )

Substituting eqns (5), (7), and (9) into eqn (10) gives the differential expression of
(s, ljJ, ¢) with respect to 8,

where

ds = (i(8) dljJ = (aCo- K~ cos 8) 8 )
d8 . 'd8 a sin2 8 f()

d¢ (asin2 8+ cos 2
8)K~ -aCocos8

d8 = . 08 f(8)
asm·

(12)

f(8) = ±~_8_ )
.jg(cos 8)

{I3)

(
KO )2'g(w) = {2C)-2Rw+(p-q)R 2 w2 }(I-w2

)- Co - : w

The differential expression of the components {x(s, r), y(s, r), z(s, ,)} of the position
vector x is obtained from the substitution of eqns (I), (7), (9) and (12) into eqn (2) :

:~ = f(8){1 + (q - p)R cos 8} sin 8 sin ljJ,

dx )d8 = f(8) {I + (q - p)R cos 8} sin 8 cos ljJ

d 7 .di = f(8)[ {I + (q - p)R cos 8} cos 8 + pRJ

(14)

From a detailed calculation, we discover that two of the solutions of the equation g(w)= 0
satisfy -1 :( w :( 1, and one of other solutions satisfies Iwl ~ 1. Therefore g(w) can be
expressed as follows:

(15)

By comparing eqn (13) with (15), we can express the integral constants {R(r), Co(r) , C1(r),
KHr)} and the parameters {Ilj, 1l2} in terms of stiffness ratios and four parameters
{8 m(r), 8n(r), cp(r), l1(r)} as follows:

where

R = -112 cos2cp, K~ = a(p-A), Co = p+)

C 1 = C~ + III cos 8m cos 8n

III = 11 2 [2 + (Q-P)11 2
{ cos 2cp( cos 28m + cos 28,,) -I}], 112 = (Q - P)11 4

COS 2cp

(16)
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Let us introduce new parameter t, and functions Cg(t), Sq(t) as

C, (
,cos 2em + cos 2en cos 2em- cos 2en 1

q t) ==-~~~~ + cost = cose
2 2

Sq(t) == JI-Cg(t)2 = sine
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(18)

Then, from eqns (10)-(13), an analytical solution is described in terms of ten parameters
{ern(r), en(r), <per), 17(r), toCr), te(r), !/Jo(r), cPo(r), !/Jp(r), ep(r)} and the integral variable t
[to :'( t :'( te] as follows:

where

s = set) = fF(t) dt

e = e(t) = cos- 1 [Cg(t)]

!/J = !/J(t) = !/Jo+n(t)+r(t)

cP = cP(t) = cPo+n(t)-r(t)+n(a-l)(p-A)s(t)

x = x(t) = xe l (ep,!/Jp)+ye2(ep, !/Jp)+ze3 (ep, !/Jp)

x = x(t) = fF(t) {I - (q - p)17 2cos 2<pCq(t)} Sq(t) cos !/J(t) dt

y = yet) = fF(t){I-(q-p)17 2cos2<pCg(t)}Sg(t) sin!/J(t) dt

z = z(t) = fF(t)[{I-(q-P)172COS2<PCg(t)}Cq(t)-P172COS2<P]dt

(19)

(20)

to and te are the values of t at s = 0 and s = I, respectively. The integral variable t mon
otonically increases as s increases, and therefore we call it generalized arc-length hereinafter.
The elastica curve is determined only by four parameters (em, em <P, 17). Other parameters
(to, t,,!/JO' cPO' !/Jp, ep) give no principal effect on the curve. This solution is reduced to that of
the Kirchhoff equations by setting P = q = O.

3. POLAR SINGULARITY ASSOCIATED WITH EULER ANGLES

In the present solution (19), the effect of the polar singularity associated with Euler
angles appears seriously in the functions net) and ret). In eqn (20), Cg(n) = -1 and p = 0
hold if en = n/2, and Cg(O) = 1 and Ie = 0 hold if em = O. Hence, in each case, the values of
net) or ret) cannot be computed from eqn (20). After integrating net) by parts, we obtain

[
cot(t/2) . I ( Cmn ) / . J'net) = - I (',/2)1 sm- 1"1 ? yl2(PI -P2) sm<pF(t)
cot t; / c2 + cot- (tI2) ,'\,.' mn ()

It cot(t12) . - I ( Crnn ) /2( ). dF(t) d+ sm V PI -p, sm<p~- t
'" Icot(t/2)1 J C~n + cot2(tI2) - dt

(21)
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where Cmn = cos enl cos em' In the case en = n12, Cmn vanishes and OCt) remains invariant for
t i= n as in eqn (21). At t = n,

I
cot(tI2) . ~l ( Cmn )J . I n
I ( 12) I

Sill J - 2(111 - 112) Sill qJF(t) = -2 (22)
cot t c~n + cot2 (t12)

and OCt) changes its value stepwise by the amount n12. This means that the function
piP +Cg(t)] in eqn (20) acts as a delta function. A similar result holds for i(t). The value
of sin eml sin en [== smn] holds the key to the behavior of ret) instead of Cm"' Thus ljJ and 1>
also changes stepwisely at the singular points. Ifwe use eqn (21) for the calculation of O(t),
no numerical difficulty arises.

It must be mentioned that we cannot uniquely determine the value of Cmn or Smn when
em = en = 0 or n12. The buckling point of a rod subjected to terminal twist and uniaxial
compression is under this condition. However, we can determine them theoretically by
using the relation of the buckling load and the twist angle obtained from the linear analysis
[Zachmann (1979)]. Thus there remains no difficulty in computing any boundary value
problem. Note that we can never predict this special behavior ofljJ, 1> at the singular points
by means of numerical integration of eqns (5) and (6), e.g., using Runge-Kutta or finite
difference procedure [Huddleston (1978), Nordgren (1974)].

4. CONTACT PROBLEM

We assume the contact condition when the elastica contacts with itself as follows:

1. No distortion is caused within the cross-section by the contact force.
2. The cross-section is a circle of radius d and the elastica contacts at one point on its

surface.
3. The contact force acts towards the centroid of the cross-section containing the comact

point.

When the elastica contacts with itself, it can be divided into three elements as in Fig. 1. The
first element is the part from the origin of the elastica to the contact point. The second
element is the loop formed by the contact point. The third element is the part from the
contact point to the end of the elastica. As mentioned in Section 2, the z-axis of the reference
frame is parallel to the direction of the external force applied to the end of the element.
Thereby the reference basis of the second element (loop element) does not coincide with
those of other elements while the first and third elements have the same reference basis.

f
CONTACT

POINT
\
ELEMENT-1

/
ELEMENT-2

Fig. I. Contact problem.
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The relation of the reference frame {eF](T)}i~],2,3 of the second loop and the frame
{e;(T)};~ I,Z,3 of other elements can be described by two rotation angles {!/te(T), ee(T)} :

elZ
] = cos ee cos!/teel + cos ee sin!/teez - sin eee3l

e~Zl = - sin !/tee I + cos!/teez '

e~2] = sin ee cos !/tee] + sin ee sin !/teez + cos eee3

The contact conditions at the origin of the second element are given as follows:

{M] (te), M z(te), M 3(te) }[IJ = {M J (to), M z(to), M 3 (to) }[z]

{oJ (te),OZ(te), 0 3(te)} [I] = {Ol (to),OZ(to), 0 3 (to)}[Z]

- R[ZJe~Z] +R[I]e3 = FeEe

(23)

(24)

where Fe is the amount of the contact force, and Ee is a unit vector in the direction of the
contact force and described as

The contact conditions at the end of the second element are given as follows:

{M j (te),Mz(te),M3(te)}[Z] = {M 1 (to), Mz(to), M 3(to)}l3] ]

{oJ (te),OZ(te), 03 (te)}[Z] = {Ol (U, OZ(to),03(to)}[3] .

X(te)[Z! = -2dE
n

E
c
'03(te)[Z] = 0, R[Z] = R[3]

The number of the unknowns is thirty:

(25)

(26)

The contact conditions which these unknowns must satisfy are eqns (24) and (26). The
number of these conditions is twenty. Therefore the boundary value problem can be solved
if ten conditions are given at the origin or the end of the elastica. The above unknowns are
called "the system parameters" in the following. Note that the determination of the values
of generalized arc-length {too te} [,~1 corresponds to the search of the contact point.

5. "THE TWIST-SHORTENING PROBLEM"

In this section, we study in detail "the twist-shortening problem" proposed in the
Introduction. In Fig. 2, one end of the straight elastica is clamped. The other end is
previously twisted through the angle of cPm about the axis joining the both ends, and later
subjected to the end-shortening of the amount ~t about this axis (~< 1). No displacement
or rotation is allowed in any direction out of this axis. The problem is governed by six
parameters (a, p, q, d/ t, <Pm, ~). Let us locate the fixed spatial basis {EJ i~ 1,Z,3 such that



3626 Y. Miyazaki and K. Kondo

Fig. 2. Twist-shortening problem.

Ei = ni(to)' Then the boundary conditions are written as follows:

(27)

The twist-shortening problem is solvable under these ten independent conditions as men
tioned at the end of the previous section. Taking into account the symmetry of the defor
mation, we obtain

where k is a positive integer and represents the degree of the buckling mode. Thus the
number of the unknown system parameters reduces by five. The independent boundary
conditions are also reduced from ten to five:

s(te) = I, x(te) =(I-~)Sq(to), z(te) =(I-~)Cg(to)}

ljJ(te) = 2in, rP(te) = rPm- 2in

where i is an integer.

(29)

5.1. The stiffness ratio a and the twist angle rPm
Consider the case where there is no contact point. The solution and the boundary

conditions are given by eqns (19) and (29), respectively. The stiffness ratio a explicitly
relates only to the Euler angle rP (see eqn (19)). The terminal-twist angle rPm also relates
only to rP as in eqn (29). Therefore the system parameters which describe the boundary
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value problem represented by (a,p, q, rPm, () satisfy the boundary conditions represented by
(ti,p, q, ¢m,~) if the following relation holds:

¢m = rPm+n(ti-a)(p-A)sCte)

= rPm+1t(~-I)K~. (30)

This result implies that we can obtain the solutions for arbitrary values of the stiffness ratio
ti by using the solution for a given stiffness ratio a. This feature of the solution is quite
important and convenient in the estimation of the influence of the stiffness ratio a on the
solution. Note that the deformation in the absence of torsion is identical for the elastica of
arbitrary stiffness ratio a. The same relation holds in the contact problem because the
torsion is identical for all elements.

5.2. Kirchhoff model
If p = q = 0, the elastica is inextensible and its cross-section is perpendicular to the

line of the centroid after the deformation, i.e., the elastica obeys the Kirchhoff hypothesis.
In this subsection, we study the spatial behavior of a Kirchhoff elastica under the twist
shortening by using eqn (19). The integrals in eqn (19) are performed numerically with
Gaussian integral procedure. Therefore the numerical values shown in the following involve
very small numerical errors.

5.2.1. Unstable behavior ofspatial elastica. Figure 3 shows the deformed shapes of the
elastica under the axial end-shortening with no terminal twist, i.e., rPm = 0. The stiffness
ratio is a = 1, and the radius of the cross-section is d = 0.02 I. The elastica buckles at
~ = 0, and buckles out of plane at ~ = 0.667. It deforms spatially for the subsequent end
shortening, and contacts with itself at ~ = 0.811. The strain energy stored in the spatially
deformed elastica is smaller than that in the planar elastica for ~ > 0.667. Therefore the
elastica deforms spatially for ~ > 0.667. You can really watch such a secondary buckling
phenomenon when you compress a string uniaxially. The bifurcation point of this secondary
buckling is determined according to the value of the stiffness ratio a. We can analyze this
bifurcation by using the perturbation method as follows: when the elastica deforms in
plane under rPm = 0, the system parameters are (em,tm qJ) = (0,0,0), and e" is determined

Contact •

Secondary
buckling

[;=0] [~=0.25] [;=0.5] [~0.667] [~0.75]

---------.

[~0.811] [;=0.85]
Fig. 3. Deformed shapes (cPm = 0).
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()
_ 1+ cos28n 1- cos28n

Cg t - 2 + 2 cos t.

(31)

These results are obtained from eqns (19), (20), and (29). Now we consider the small
perturbation of the twist angle ecP:;', and that of the shortening ratio e~* from
(cPm, 0 = (0, ~o), and denote the resulting perturbation of other variables as e()* where
e « I

cPm=ecP:;', ~=~o+e~*, ()=()+e()*. (32)

After a few calculations by using eqns (19), (20), and (29), the relations between the
perturbations of the system parameters (8:;', 8~, <p*, Yf*, m and (cP:;', ~*) are obtained as
follows:

(33)

where

(34)

Let cP:;' and ~* lead to O. Then eqn (33) must have non-trivial solution of (8:;', 8~, cp*, Yf*, t:)
at the bifurcation point. Thus, Jo = 0 must hold there. Accordingly we can determine: the
value of 8n for a given end-shortening ~o by eqn (31) and the value of the stiffness ratio a
for which the bifurcation occurs at ~o by:

(35)

Figure 4 plots the bifurcation point ~o as a function of a. This secondary buckling is caused
by the transition of the energy from the bending mode to the torsional mode. So the
bifurcation occurs with smaller end-shortening for larger flexural rigidity as in Fig. 4. Figure
4 also shows that the bifurcation never occurs for a < 0.5 or ~ < 0.371. At ~ = 0.371, the
resulting perturbation of the torsion (K3)* vanishes, and this point is the bifurcation point
in the case the applied torsion is prescribed to O. Kovari (1969) treated this problem.

Figure 5 shows the deformed shapes of the elastica in the end-shortening process under
cPm = 2n. The contact of the elastica is not taken into account. The elastica buckles spatially
at ~ = O. It forms a planar loop at ~ = 0.667, and deforms in plane for further end
shortening. If the contact model is used in the calculation, the elastica contacts with itself
at ~ = 0.660 and deforms with the contact for further end-shortening. The planar loop
solution exists also in 0 < ~ < 0.667, i.e., the point ~ = 0.667 is the bifurcation point from
the spatial into the planar solution. We call the former the non-kinking solution and the
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1

~

0
+:i
«Sa:
0)
c
c
(])
t:: 0.5
0
..c
C/)

I0.371 --.- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ----

0.3 0 ~.5 5 10

Stiffness Ratio a
Fig. 4. Secondary buckling point (4)m = 0).

later the semi-kinking solution. This bifurcation point is analyzed in the same manner
as the previous case cPm = 0. For the semi-kinking solution, the system parameters are
(8m, 8n> to) = (0, n12, n), and q> is determined by the following equation.

(36)

where

Non-kinking
solution

Semi-kinking
solution

[;=0)

\

[;=0.25] [;=0.5] [;=0.667]
Fig. 5. Deformed shapes (4)m = 2rr).
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I
n I In ~t

/5 = -dt, L = dt.
o J I + COS 2cp COS t " 0 J I + COS 2cp COS t

(37)

The perturbation of each parameter relates to others as follows:

- /n cos cP /m )!JJ::' = ;;> ¢::., U)~= ;;>¢::.
2v 2 8v 2

*__ fi/zcosenCOS2cp(j* [. In (l-ocost-cos
2

t d ] *- *
to - . m' sm2cp t cP - -/s~

Ismcpl 0 (JI+cos2cpcost)3

where

At the bifurcation point, /0 = 0 holds, i.e.

(38)

(39)

(40)

Figure 6 shows the relation of a and this bifurcation point ~ = ~2' This bifurcation point is
the transitional point of the deformation from the torsional mode to the bending mode. So
the larger the flexural rigidity is as against the torsional rigidity, the larger ~2 is. But ~2

never exceeds 0.698 for any value of a. This point is the bifurcation point under (K3)* =, O.
The bifurcation occurs for the arbitrary value of a, which is different from the case ¢m =, O.

1,--------,.-------r----------r-----------,

0.698 - --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ----
o
1aa: 0.5
C')
c
c
Q)
t
o
.c
en

Or.- .L-- .L-- ~ ~

0.0 1.0 2.0

Stiffness Ratio a
Fig. 6. Bifurcation point (cPm = 2n).
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[;=0) [;=0.25) [;=0.377] [;=0.503] [;=0.75) [;=0.85)
Fig. 7. Deformed shapes (<Pm = 3n).

Figure 7 shows the deformed shapes of the elastica under cPm = 3n. Figure 8 plots the
terminal thrust T = P3(0, r) and the total strain energy n as a function of ~, respectively.
T and n are normalized by the Euler buckling load Pcr = -An2W and no = An2/21,
respectively. As seen in these figures, the non-contact solution does not exist when ~ exceeds
the critical value ~cr = 0.507. There exist two non-contact solutions when cPm> 2n and
~ < ~cr" One is the semi-kinking solution and the other the non-kinking one. Each solution
coincides with the other at the critical point ~ = ~cr' The contact solution exists for
~ ;:, 0.377. We call it the kinking solution hereinafter. Let us consider the deformation
process of the elastica on Figs 7 and 8. After the elastica buckles at ~ = 0, it deforms along
the non-kinking path (Qo ~ Q3)' At the critical point Q3' it suddenly jumps into the kinking
state Q4' After that, it deforms along the kinking path for the subsequent end-extension
(Q4 ~ Q7) as well as the end-shortening (Q4 ~ Q6)' The contact results in the decrease of
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Fig. 8. Twist-shortening process under <Pm = 3rr (a) terminal thrust T(P", = - An2!l2) (b) total strain
energy IT (ITo = An2/2/).
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the terminal tension and the total strain energy. For the subsequent end-extension, the
terminal tension increases and the kinking tightens. For the large end-shortening, the
terminal thrust transits from tensile to compressible force and goes off to infinity because
of the constraint induced by the contact. When the elastica is terminally extended along
the kinking path, the contact force decreases and vanishes at ~ = 0.377 (Q7), where the
kinking state coincides with the semi-kinking state. For ~ < 0.377, the contact force of the
kinking elastica is negative and the semi-kinking elastica intersects itself. These solutions
are thereby physically meaningless, and we can conclude that the elastica jumps back into
the non-kinking state at ~ = 0.377. Thus the elastica cannot deform along the semi-kinking
path. Figure 8 shows that TIPer decreases for the end-shortening along the non-kinking
path, where the solution is unstable for axial compression if the end of the elastica is load
controlled. Other calculations show that the non-kinking solution is unstable at the buckhng
point ~ = 0 for 1m ~ 1.69n although the buckling load is compressive for 1m < 2.83n.

The critical value ~er gets smaller when 1m gets larger as a gets larger (Fig. 9). Roughly
speaking, the elastica reaches the critical state more easily for the smaller flexural rigidity
compared with the torsional rigidity. Figure 10 shows the distribution of the bending energy
(nb) and torsional energy (nJ along the arc length of the elastica at (~, 1m) = (0.4, 3n). Ea.ch
energy is normalized by no = An2/2J2. In the semi-kinking and kinking cases, the bending
energies concentrate extremely about s = 112, and the torsional energies are much less than
the bending energies. From these figures, we can conclude that the jump from the non
kinking to the kinking state is the transition of the torsional energy to the bending energy.

5.2.2. Comparison with "the shortening-twist problem ". It is well known that the solu
tion depends on the order of the application of load or displacement in a certain boundary
value problem (e.g., Griner, 1984). Such a phenomenon is also observed in our problems.
In the shortening-twist problem, there are additional solutions which do not appear in the
twist-shortening problem.

As discussed in the previous section, three dimensional deformation occurs with no
terminal twist for ~ > 0.667 with a = I. Figure 11 (a) shows the deformed shapes in the
twisting process ~ = 0.75, and the corresponding value of the terminal torsional moment
M, = M 3(0, r) is shown in Fig. 12(b). There are three solutions (S), S3, Ss) for 1m = 0, which
are related to others in the twisting process such as in Fig. ll(b). In Fig. II(b), the solution
curves represented in bold lines appear also in the twist-shortening process while those
represented in broken lines never appear. Figure 12 illustrates the torsional moment M, as
the function of the shortening ratio ~ and the twist angle 1m. This figure clearly shows that

1.00.80.2 0.4 0.6

Arc Length s/ .e
Fig. 9. Distribution of strain energies 11(110 = A112!212)[(~, c/>m) = (0.4, 311)].
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the deformation represented by the solution surface L never occurs in the twist-shortening
process. We can also see from Fig. ll(b) that the snap-through phenomenon occurs from
52 to 56 in the increasing process of <Pm (51 ---> 52)'

5.3. Extensible elastica
There are three main differences between the present elastica model and the Kirchhoff

model: (1) there exists a "trivial" solution in the present model. This solution corresponds
to the pre-buckled elastica which is uniformly twisted of the angle <Pm and uniformly
compressed of the strain Y3 = - ~. The non-kinking solution should be regarded as the
bifurcated solution from the trivial one. (2) The buckling does not occur at ~ = 0 in general.
The buckling occurs at ~ > 0 if the buckling load is the compressive force, while at ~ < 0 if
the force is tensile. In the latter case, the elastica buckles into the non-kinking state only
with the terminal twist and no end-shortening. (3) There exists no kinking or semi-kinking
solution at ( = 0 in case of the Kirchhoff model because the elastica is assumed to yield no
extension. The present model includes the effect ofextension and we can analyze the kinking
elastica at ~ = O.

Let us fix our attention to the special behavior of the elastica at ~ = O. Figure 13(a)
and (b) respectively shows the change of the deformed shape and the applied torsional
moment under ( = 0 in the case (a,p, q, d/l) = (0.5, 0, 0.2, 0.02). In the way of the twisting
process, the elastica buckles from the trivial state into the non-kinking state at <Pm = 1.43n
(D,). For the subsequent twist, the elastica deforms along the non-kinking path (D, ---> .04),

and forms a kink at <Pm = 2.29n (D 4 ---> Ds). In the decreasing process of the terminal twist,
the elastica jumps back into the non-kinking state at <Pm = 2.05n (Ds ---> D3). Thus hysteresis
exists in 2.05n < <Pm < 2.29n.

It must be noted that the effect of the transverse shear is not significant in "twist
shortening problem" compared with that of the extension. We can obtain rough estimaltion
of the transverse shear effect from eqn (19). The effect of shear flexibility p appears mainly
in the z-coordinate, i.e., the position component in the direction of the terminal force.
Thereby it may be concluded that the transverse shear gives some effect on the value of the
shortening ratio when some special phenomenon such as the kinking appears. Figure 14
shows the relation between p, q, and the critical value (cr of the kinking under

(a) Kinking
solution

(b)

1.51-----z:=::::~~-

1.0

-- - Trivial
- Non-contact
..... Intersect

-Contact

0'--__-----' -'- _
1.0 1.5 2.0 2.5

Twist Angle tPm/n

0.5
(ij
c
o
'iii

~

'E
Q)

E
o
~

•gJump
a........

Non-kinking
solution

[¢m /:rt=0] [1.43] [1.5] [2.05] [2.29] [2.5]
Fig. 13. Twisting process under ~ = Ora = 0.5] (a) deformed shapes (b) torsional moment.



Solution of spatial elastica 3635

0.100.08

------- p = 0

-p=O.l
- - - p = 0.2

...... ...... ---
............

0.04 0.06
Stiffness Ratio q

0.02

..........
'.",.,

'.' . ." .',
' .. .... .....

' .
.....- ..

..........
"-'" "'"

0.6

0.5
t;

"'Vl
..... 0.4c:
0

CL

aj
0.3

0
:.p
"L:

0.2()

0.1
0.00

Fig. 14. Effect of transverse shear and extension on the critical point of kinking.

(a, cPm) = (l, 3n). The larger shear flexibility as well as the larger extension flexibility causes
the smaller critical value.

6. CONCLUDING REMARKS

A closed-form solution is derived for extensible, shear-flexible spatial elastica with
equal principal stiffness under the assumption of no distributed load. The problem of the
polar singularity inherently associated with the Euler angles is clearly resolved.

To demonstrate the validity and the applicability of the present solution, two boundary
value problems are considered, i.e., "the twist-shortening problem" and "the shortening
twist problem". The contact problem is solved in the case where the elastica contacts with
itself and forms a kink. From the theoretical observation and the numerical analysis, the
global qualitative and quantitative behaviors of a spatially buckled elastica are clarified,
and the theoretical explanation is given to the well-known phenomena, e.g., the secondary
buckling, snap-through behavior, catastrophic formation of a kink.

In this paper, four assumptions are used with respect to the constitutive relations and
the external force (see Section 2). Many researchers study more general cases with fewer
assumptions by both theoretical and numerical approaches. The authors hope the present
results may be available for other studies.
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